OGlcNAcylation and Phosphorylation Have Similar Structural Effects in α-Helices: Post-Translational Modifications as Inducible Start and Stop Signals in α-Helices, with Greater Structural Effects on Threonine Modification

نویسندگان

  • Michael B. Elbaum
  • Neal J. Zondlo
چکیده

OGlcNAcylation and phosphorylation are the major competing intracellular post-translational modifications of serine and threonine residues. The structural effects of both post-translational modifications on serine and threonine were examined within Baldwin model α-helical peptides (Ac-AKAAAAKAAAAKAAGY-NH2 or Ac-YGAKAAAAKAAAAKAA-NH2). At the N-terminus of an α-helix, both phosphorylation and OGlcNAcylation stabilized the α-helix relative to the free hydroxyls, with a larger induced structure for phosphorylation than for OGlcNAcylation, for the dianionic phosphate than for the monoanionic phosphate, and for modifications on threonine than for modifications on serine. Both phosphoserine and phosphothreonine resulted in peptides more α-helical than alanine at the N-terminus, with dianionic phosphothreonine the most α-helix-stabilizing residue here. In contrast, in the interior of the α-helix, both post-translational modifications were destabilizing with respect to the α-helix, with the greatest destabilization seen for threonine OGlcNAcylation at residue 5 and threonine phosphorylation at residue 10, with peptides containing either post-translational modification existing as random coils. At the C-terminus, both OGlcNAcylation and phosphorylation were destabilizing with respect to the α-helix, though the induced structural changes were less than in the interior of the α-helix. In general, the structural effects of modifications on threonine were greater than the effects on serine, because of both the lower α-helical propensity of Thr and the more defined induced structures upon modification of threonine than serine, suggesting threonine residues are particularly important loci for structural effects of post-translational modifications. The effects of serine and threonine post-translational modifications are analogous to the effects of proline on α-helices, with the effects of phosphothreonine being greater than those of proline throughout the α-helix. These results provide a basis for understanding the context-dependent structural effects of these competing protein post-translational modifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OGlcNAcylation and Phosphorylation Have Opposing Structural Effects in tau: Phosphothreonine Induces Particular Conformational Order

Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is asso...

متن کامل

In silico structural analysis of quorum sensing genes in Vibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

متن کامل

Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125.

Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodol...

متن کامل

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

The role of intracellular protein O-glycosylation in cell adhesion and disease☆

Post-translational protein modification, including phosphorylation, is generally quick and reversible, facilitating rapid biologic adjustments to altered cellular physiologic demands. In addition to protein phosphorylation, other post-translational modifications have been identified. Intracellular protein O-glycosylation, the addition of the simple sugar O-linked N-acetylglucosamine (O-GlcNAc) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014